ADVANCED COAL CLEANING AND COAL RECOVERY

US-India Coal Working Group Meeting April 4-5, 2006

by

Roe-Hoan Yoon Virginia Tech

http://www.castconsort.org

Separation Processes Used for Coal

In the absence of advanced Solid-Liquid Separation Technologies coal fines are still being discarded.

Impoundments

- 3 billion tons of fine coal
 - In 713 impoundments
 - Mostly in Central Appalachia.
- Main cause
 - Lack of appropriate Separation Technologies
 - Solid-Solid (Fine particles)
 - Solid-Liquid (Dewatering)

Application of Advanced Separation Technologies

- Use of advanced separation technologies at Middle Fork
 - Recovered coal
 - Reuse of impoundment
 - No new impoundment
 - No new permits

Microcel Flotation

Microcel at BMA

Cleaner Coal at BMA

New Installations in Australia

Microcel In Australia

An Indian Coal

Fine coal produces lower-ash coal.

Fine coal dewatering is costly.

from Hucko, 1990

Center for Advanced Separation Technologies

CAST

Advanced Coal Cleaning Technologies at Virginia Tech

- Microcel flotation
- Dewatering
 - 1. Dewatering aids
 - Licensed to Nalco
 - Pinnacle pond recovery plant
 - Due to completion in July 2006
 - 2. Hyperbaric centrifuge
 - Licensed to Decantor
 - Pilot-scale tests is ongoing
 - 3. Hyperbaric horizontal belt filter
 - Pilot-scale tests is ongoing
 - 4. Dewatering by displacement
 - An engineering company is exploring commercialization potential
 - 5. Polymer injection system for Screen-bowl centrifuges
 - 18 installations

Dewatering fine coal helps you increase revenue.

Existing Dewatering	Clean (tph, ar)	Moisture (%, ar)	Ash (%, ar)	Heat (Btu/lb, ar)
Coarse (1.50 SG)	552.6	5.0	12.0	12450
Fines Circuits	85.0	14.0	10.5	11325
Total Plant	637.6	6.2	11.8	12300
Improved Dewatering	Clean (tph, ar)	Moisture (%, ar)	Ash (%, ar)	Heat (Btu/lb, ar)
Coarse (1.50 SG)	552.6	5.0	12.0	12450
Coarco (1 Ev1 6 SC)	25.0	5.0	25.0	10500

 Coarse (1.50 SG)
 552.6
 5.0
 12.0
 12450

 Coarse (1.5x1.6 SG)
 25.8
 5.0
 25.0
 10500

 Fines Circuits
 81.2
 10.0
 11.0
 11852

 Total Plant
 659.7
 5.6
 12.4
 12300

Tonnage Gain = 659.7-637.6 = 22 tphValue = 22 ton/hr x \$50/ton x 5,000 hr/yr = \$5.5 MM/yr

Great Payback! Dump moisture on steam contracts, it's 100% inert!

Center for Advanced Separation Technologies

Fine coal cleaning is good for the country.

Results show that dry coal can be obtained without thermal drying.

M _b /M _c	Percent Moisture at Specified Feed Solids Content			
Ratio	5% Solids	15% Solids	30% Solids	
0.5		15.1	9.6	
0.75		10.7	6.5	
1.0	12.5	8.8	>1.0	
1.5	5.5	3.5		
2.0	1.4	1.1		

By decreasing the top size of the coals cleaned from 1.5 inches to 14 mesh, US can double its reserve for compliance coal (DOE report by Cavallero, et al. 1991)

Advanced Hydrocyclone

Electronic Density Tracers

Project:

 Develop electronic "tags" to monitor performance of density separators.

Status:

- Tag/antenna system constructed using transponder technology.
- Automated system accurately detected 98.5% of tracers added, while lower manual count gave a misleading result.
- Field study indicated potential savings of \$1 MM per plant by improving recovery and reducing waste.

Applicability:

Coal, Base Metals, Diamond

Flotation Model

Under Laminar Flow Conditions

(Yoon and Mao, JCIS, 1996; Mao and Yoon, IJMP, 1997)

$$\frac{dN}{dt} = -kN$$

$$k = \frac{1}{4}S_b P$$

$$P = P_c P_a (1 - P_d)$$

$$k = \frac{1}{4}S_{b} \left[\frac{3}{2} + \frac{4Re^{0.72}}{15} \right] \left(\frac{D_{p}}{D_{b}} \right)^{2} exp \left(-\frac{E_{1}}{E_{k}} \right) \left[1 - exp \left(-\frac{W_{ad} + E_{1}}{E_{k}} \right) \right]$$

Microcel

Pond recovery at Pinnacle Mine

Wyoming County, WV

Pilot-scale tests

- Moisture reduction
 - From 29% to 16%
- Throughput

• 2-3 times higher

 200 tons/hr plant is being built by Bea Technologies

A Solution for Indian Coal

Energy Policy Act 2005

922

12	(1) innovations for existing plants (including	1	(7) 1:: 1	
13	mercury removal);	1	(7) liquid fuels derived from low rank coal	
14	(2) gasification systems;	2	water slurry;	
15	(3) advanced combustion systems;	3	(8) solid fuels and feedstocks;	
16	(4) turbines for synthesis gas derived from coal;	4	(9) advanced coal-related research;	
17	(5) carbon capture and sequestration research	5	(10) advanced separation technologies; and	
18	and development;	6	(11) fuel cells for the operation of synthesis gas	
19	(6) coal-derived chemicals and transportation	7	derived from coal.	
20	fuels;			

Simplified Flowsheet

Separation Processes Used for Coal

Microcel at BHP

Typical Ash/Moisture in Product Stream

Hyperbaric Centrifuge

Table 60 Effect of Using Compressed Air for the Centrifugal Filtration of a Pittsburgh Coal³

Drying Cycle or	Cake Moisture (wt %)			
Centrifugation Time (sec)	Air Pressure ¹ Alone	Centrifugal Force ² Alone	Centrifugal Force ² & Air Pressur ¹	
30	27.5	24.4	14.2	
60	25.8	22.6	12.9	
120	23.8	21.0	10.6	

1100 kPa of air pressure; 2 2000 G; 30.45 inch cake thickness.

Semi-continuous unit

Dewatering by Displacement (1)

(Liquid butane displaces water from coal surface.)

An engineering company is exploring commercialization potential.

Dewatering Aids (2)

Hyperbaric Filter Centrifuge

Project:

 Develop a pressurized (hyperbaric) filter centrifuge for solid-liquid separation.

Status

- Pilot-scale unit constructed and tested
- One test reduced moisture from 11.0% to 1.86%.
- Flotation product from Moss 3, VA
 - No air

15.9% moisture

- 15 sec air 10.3%
- 120 sec air 6.7%

US patent issued

- 6 international patents applied for
- Applicability:
 - fine coal
 - Mineral fines
 - municipal sludge
 - Food
 - others.

Hyperbaric Belt Filter

Project:

 Development of high efficiency, high pressure belt filter for solid-liquid separation.

Status:

- Project just beginning, but design and construction of prototype is well underway.
- Contact with a major equipment producer to further develop, manufacture, and sell the unit.

Applicability:

 Coal and Minerals, Municipal Waste Sludge, Environmental Applications

Hydrophobic Dewatering

Project:

 Develop of novel solid-liquid separation process can compete with thermal drying methods.

Status:

- Process uses recyclable nonpolar liquid to displace moisture
- Bench-scale tests successfully completed with moistures <1%.
- Concept patent issued and new disclosures expected.
- Marketing discussions underway with a major engineering firm.

Applicability:

 Coal and Minerals, Municipal Waste Sludge, Environmental Applications

Test Condition	Moisture (%)	Yield (%)
5 ml P	2.90	89.6
5 ml P + 1 ml E	2.17	75.5
5 ml P + 12 ul RU	1.89	74.2
5 ml P + 12 ul FA	0.67	49.9
5 ml P + 120 ul O	1.15	14.0